Advanced linear algebra final exam

mango

February 28, 2023

1.Is there exists a real matrix A such that $A^4+I=0$? 2.Let $x,y\in\mathbb{C}^n$ and $y^*x\neq 0$.Proof: $\|I_n-\frac{xy^*}{y^*x}\|_2=\frac{\|x\|_2\|y\|_2}{|y^*x|}$ 3.Let $A\in\mathbb{C}^{n\times n}$ and $\mathrm{rank}(A)+\mathrm{rank}(I-A)=n$.Proof that A is diagonalizable.

4.Let $A \in \mathbb{C}^{n \times n}$ and $v \in \mathbb{C}^n$. Proof the inequality: $\lambda_i(A) \leq \lambda_i(A + vv^*) \leq v$

 $\lambda_{i+1}(A) \ \forall i, 1 \leq i \leq n-1.$ 5.Let A and $E \in \mathbb{C}^{n \times n}$.Proof $\exp(A+E)$ - $\exp(A) = \int_0^1 exp((1-s)A) \cdot E \cdot exp(A) = \int_0^1 exp((1-s)A) \cdot exp(A) = \int_0^1 exp(A) \cdot exp(A) \cdot exp(A) \cdot exp(A) = \int_0^1 exp(A) \cdot exp(A) \cdot exp(A) \cdot exp(A) \cdot exp(A) = \int_0^1 exp(A) \cdot exp(A) \cdot exp(A) \cdot exp(A) \cdot exp(A) = \int_0^1 exp(A) \cdot exp(A) \cdot exp(A) \cdot exp(A) \cdot exp(A) \cdot exp(A) = \int_0^1 exp(A) \cdot exp(A)$ exp(s(A+E)) ds

6.Let $A, B \in \mathbb{R}^{n \times n}$ and 0 < A < B.Proof that $\rho(A) < \rho(B)$.

7. In $\triangle ABC$, there exist P in edge AC and Q in edge AB, which satisfies that |BP||CQ| = |AP||AQ|.CP and BQ converges within the triangle in M.Find the position of P,Q to maximize $\frac{S_{\Delta MBC}}{S_{\Delta ABC}}$. 8.Let $A \in \mathbb{C}^{n \times n}$.Proof that A can be represented by a finite sequence of

unitary matrix.